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Abstract

Our minds navigate a continuous stream of sensorimotor experiences, selectively compressing

them into events. Event-predictive encodings and processing abilities have evolved because they

mirror interactions between agents and objects—and the pursuance or avoidance of critical interac-

tions lies at the heart of survival and reproduction. However, it appears that these abilities have

evolved not only to pursue live-enhancing events and to avoid threatening events, but also to distin-

guish food sources, to produce and to use tools, to cooperate, and to communicate. They may have

even set the stage for the formation of larger societies and the development of cultural identities.

Research on event-predictive cognition investigates how events and conceptualizations thereof are

learned, structured, and processed dynamically. It suggests that event-predictive encodings and pro-

cesses optimally mediate between sensorimotor processes and language. On the one hand, they

enable us to perceive and control physical interactions with our world in a highly adaptive, versa-

tile, goal-directed manner. On the other hand, they allow us to coordinate complex social interac-

tions and, in particular, to comprehend and produce language. Event-predictive learning segments

sensorimotor experiences into event-predictive encodings. Once first encodings are formed, the

mind learns progressively higher order compositional structures, which allow reflecting on the past,
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reasoning, and planning on multiple levels of abstraction. We conclude that human conceptual

thought may be grounded in the principles of event-predictive cognition constituting its root.

Keywords: Theory of event coding; Event segmentation theory; Action events; Anticipatory

behavior; Natural language processing; Bayesian brain; Predictive coding; Cognitive ontogeny

1. Introduction

Our behavior and our thoughts develop from our embodied sensorimotor experiences.

To understand the human mind and intelligence, it is thus necessary to understand which

learning processes, selective activation mechanisms, and concurrently developing encod-

ings continuously determine actual behavior and thought. Over the last years, it has

become increasingly clear that our brain constitutes a generative processing system,

which learns predictive, approximate Bayesian models purposefully to optimize its own

behavior for maintaining internal homeostasis (Friston, 2009; Maturana, 1975).

However, mere probabilistic, predictive processing does not seem to be enough. In

order to effectively interact with each other and the rest of the world in progressively

more complex societies, behavior needs to be chosen and executed in highly flexible, ver-

satile, context-dependent manners. When complex social interactions are to be coordi-

nated, communication and ultimately language comprehension and production become

necessary. As a result, compacted, conceptual, and loosely hierarchically structured

encodings are needed to enable individual and social compositional reasoning and plan-

ning. Research on event-predictive cognition addresses the question of how our brain

solves the involved challenges.

More than 30 years ago, Marr (1982) asked the question “What does it mean, to see?,”

emphasizing that seeing is about the interactions between neural activities (Marr’s neural

implementation level), algorithmically unfolding processes (Marr’s algorithmic level), and

cognitive, computational mechanisms (Marr’s computational level). It is crucial to bridge

these three levels of analysis and to identify critical interactions between them, when the

final goal is to understand how our mind works (Butz & Kutter, 2017; Griffiths, Vul, &

Sanborn, 2012).

Accordingly, this special issue on event-predictive cognition (EPCog) addresses the

neural structures, algorithmic processes, and unfolding computations involved in creating

the compact, loosely hierarchically structured encodings needed to coordinate versatile

and adaptive, socially interactive behavior. Taken together, the contributions in this vol-

ume essentially suggest that event predictions lie at the heart of human thought. Event-

predictive processes, encodings, and their (ontogenetic and phylogenetic) development

are scrutinized by experts from the following disciplines: neurobiology, cognitive and

computational neuroscience, developmental and behavioral psychology, artificial intelli-

gence and machine learning, and linguistics. We hope this collection will thus contribute

to the development of an integrative perspective on how our developing brain-body com-

plex yields our human minds, including thoughts, behavior, and intelligence.
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2. Event as units of human experience

EPCog as a research topic links the concept of events, including event boundaries and

event transitions, with the predictive coding and processing perspective. EPCog sets out

to explore the extent to which event-predictive encodings and processes foster the devel-

opment of abstract, conceptual, compositionally recombinable structures from sensorimo-

tor experiences. It links event-predictive, conceptual structures to both sensorimotor and

language structures.

2.1. Event conceptualizations in behavior and language

Event encodings have been proposed at numerous levels of cognitive processing. At

rudimentary sensorimotor levels, the theory of event coding (TEC; Hommel, M€usseler,
Aschersleben, & Prinz, 2001) has proposed that actions and their effects are compressed

into a common code. This common code is assumed to be essential for enabling the invo-

cation of flexible, anticipatory behavior. The ideomotor principle suggests that common

codes develop from initially reflex-like behavior (Herbart, 1825; Hoffmann, 1993; Prinz,

1990; Stock & Stock, 2004), in that, for example, a simple arm stretching tendency soon

develops into progressively intentional, goal-directed hand reaching behavior. As a result,

progressively more complex anticipatory behavior control abilities develop.

At a somewhat more abstract level, it was shown that humans tend to perceive and

segment events consistently across participants (Zacks & Tversky, 2001). An event may

be generally characterized as “[. . .] a segment of time at a given location that is con-

ceived by an observer to have a beginning and an end” (Zacks & Tversky, 2001, p. 3).

Motivated by various segmentation studies, Zacks, Speer, Swallow, Braver, and Reynolds

(2007) proposed the event segmentation theory (EST), which suggests that events are

encoded, perceived, and processed in our brain as integrated units of thought. Moreover,

EST suggests that we segment our continuous perceptual sensorimotor stream of informa-

tion into events by analyzing prediction error dynamics, inducing event segmentations

when surprising patterns are detected.

Even at the language level, events seem to play a fundamental role. G€ardenfors (2014,
p. 107) has gone so far as to suggest that “sentences express events,” whereby multiple

types of events can be contrasted. Stative events specify states and situations that are

non-dynamic, durative, and atelic. Dynamic events can be further differentiated into being

(a) durative and atelic (i.e., ongoing activity, unbounded), (b) durative and telic (i.e., an

activity that is bounded by an accomplishment), or (c) instantaneous and telic (i.e., a

direct achievement; Casati & Varzi, 2015; G€ardenfors, 2014; Vendler, 1957). Jackendoff
(2002, p. 123) suggests that “thoughts expressed by language are structured in terms of a

cognitive organization called conceptual structure (CS). Conceptual structure is not part

of language per se—it is part of thought” (author’s emphasis). Accordingly, this volume

explores to what extent thoughts, and the conceptual structures with which they are

formed, may be rooted in event-predictive processes and encodings.
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2.2. Event-predictive codes

Besides the importance of event-respective conceptualizations, a close linkage to a

rather universal computational encoding principle in our minds, that is, predictive coding,

has become apparent (Bar, 2009; Barlow, 1961; Butz, 2008; Butz, Sigaud, & G�erard,
2003a; Friston, 2002; Hohwy, 2013; K€onig & Kr€uger, 2006; Pezzulo, Butz, Sigaud, &
Baldassarre, 2009; Rao & Ballard, 1999). In his seminal paper on modeling language

with temporally predictive, recurrent artificial neural networks, Elman (1990, p. 207)

focused on “temporal events,” concluding that hierarchical structures may emerge from

analyzing temporal event sequences and that “the error signal is a good metric of where

structure exists.” Interestingly, EST uses a closely related error signal as an event bound-

ary indicator.

When adapting this predictive coding stance, events may be viewed as being encoded

by a network of active predictive codes. These codes will predict each other’s activities,

forming distinct attractor states, which minimize mutual prediction error. Concurrently,

the active codes will predict particular aspects that characterize the currently unfolding

event, including the properties of the involved entities, along with their roles, spatial-rela-

tional dynamics, and likely behavior. Intentional and motivational reward-related aspects

of the unfolding event may also be predicted. For example, reaching for an object may

be encoded by predicting that a hand (or another agent) will move to a target object such

that the relative distance will dynamically decrease toward zero. In addition, object mov-

ability may be encoded and possibly distinct reward expectations may be activated by

particular objects, such as a bottle of water, which would generate the expectation of

refreshment and quenching thirst. Moreover, the beginnings and endings of events—that

is, event boundaries—may be predicted when critical circumstances apply, effectively

encoding the conditions under which particular events typically commence or end. For

the reaching example, this would correspond to codes that predict that an object is reach-

able and that the hand starts to move toward it—marking the beginning of a reaching

event—or to codes that predict tactile feedback and object movement—marking the end

of a reaching event upon which the object is touched and thus affected by the hand.

In the case of a stative event, the involved predictive codes form an attractor that may

predict, for example, stable spatial relations, properties of the typically involved entities,

or more global spatial and temporal characteristics. For example, when stating that “the

ball lies in the suitcase,” a predictive network may be instantiated that predicts that a ball

entity is stably located in the interior of a suitcase entity (Butz, 2017).

In the case of a dynamic event, the dynamic attractor includes dynamically changing,

temporally predictive codes, which may encode changes in state properties (e.g., spatial

relations, involved entities, emotions), focusing on the manner (i.e., the dynamics of the

motor or force activities), on the change in spatial relations, or on the final result. In other

words, a dynamic event will be encoded by particular motor or force dynamics and how

these dynamics affect particular environmental and bodily states, which cause the percep-

tion of interaction-characteristic sensory signal dynamics.
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For example, “climbing” implies a durative, atelic event, which may be encoded by an

entity code whose position relative to a slope is predicted to increase upward. However,

“she climbed the mountain” describes a durative, telic event, which essentially includes

the final event boundary, that is, a prediction that the person reached the mountain top as

the final state. Similarly, “she reached the top of the mountain” fully focuses on the event

boundary, that is, on an instantaneous and telic event, which may be encoded by predict-

ing that the distance to the mountain top reached zero (G€ardenfors, 2014).
The exact nature of such predictive event codes, and particularly also their actual algo-

rithmic and neural implementation in our brains, certainly remains largely unknown.

Nonetheless, as summarized below, the contributions in this volume hint at particular and

integrative details on all three of Marr’s levels of explanation.

2.3. Event-predictive processing and learning

How can these event-predictive codes develop from basic sensorimotor experiences?

Clearly, during ontogenetic development, sensorimotor experiences need to be structured

into progressively more complex, compact codes. Starting bottom up with mere self-gen-

erated simple actions, very basic sensorimotor experiences can be expected to develop

into TEC-like common predictive codes, which predict motor-dependent sensory and dee-

per perceptual effects. These codes may then be actively explored further, enabling the

derivation of progressively more complex codes. It appears that the involved highly inter-

active processes thus feed on each other: Event-predictive codes develop from the event-

predictive analysis of sensorimotor experiences; they are analyzed, segmented, and com-

pacted given the so-far learned encodings, as suggested by EST; moreover, they are

actively explored dependent on the so-far learned encodings, as suggested by the ideomo-

tor principle and related theories of anticipatory behavioral control. Over time, progres-

sively more compacted, loosely hierarchically structured event-predictive codes may

emerge, which may be closely related to pre-linguistic conceptual structures and event

construals (Butz, 2016, 2017; G€ardenfors, 2014; Gumbsch, Otte, & Butz, 2017).

A body of evidence has accumulated that suggests that active exploration and learning

may be formalized by free energy minimization (Friston, 2009, 2010), which, informally

speaking, determines goal-directed behavior, adapts internal state estimates, and pursues

model learning by minimizing (anticipated) prediction error. With respect to decision-

making and control, formalizations that take an expected future horizon into account yield

curiosity-driven and goal-directed planning, reasoning, and motor behavior. The resulting

so-called active inference chooses those (motor and cognitive) activities that are believed

to lead to the achievement of desired states while minimizing anticipated surprise (Botvi-

nick & Toussaint, 2012; Friston, FitzGerald, Rigoli, Schwartenbeck, & Pezzulo, 2018).

Similarly, learning as well as the adaptation of current state estimations can be formalized

as probabilistic (approximately Bayesian) model inference (Friston, 2003, 2009).

Despite its high potential, the free energy principle does not formalize particular onto-

genetic learning constraints—or inductive learning biases—that have likely evolved phy-

logenetically and that guide the development of our brains and minds (Butz, 2017; Butz
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& Kutter, 2017; Lake, Ullman, Tenenbaum, & Gershman, 2017). As detailed above, evi-

dence is accumulating that our brain actively attempts to compact our sensorimotor expe-

riences into event-predictive encodings. In light of this evidence, we can speculate that

active inference should be augmented with inductive biases that focus neural activities on

the dedicated and compact processing of event and event-boundary signals. How exactly

such inductive biases are implemented remains to be shown (several options are scruti-

nized in this volume; cf. Baldwin & Kosie, 2021; Shin & DuBrow, 2021).

Event-predictive encodings with some degree of hierarchical structure are known to be

highly useful when complex goal-directed planning and decision-making is needed (Barto

& Mahadevan, 2003; Botvinick, Niv, & Barto, 2009). Moreover, when reflecting on the

past or imagining possible—or even fully hypothetical—future or counterfactual situa-

tions and the unfolding dynamic events within, abstractions away from current sensorimo-

tor perceptions are mandatory (Buckner & Carroll, 2007). Finally, when linking these

event-predictive encodings to language, conceptual structures (Jackendoff, 2002) and

“event construals” (G€ardenfors, 2014) are necessary to enable semantic sentence process-

ing.

To scrutinize the nature of event-predictive structures, their development, as well as

the processes that unfold within these structures, an interdisciplinary, integrative research

approach is necessary. This volume thus attempts (a) to link the knowledge available

about sensorimotor processing with conceptual encoding levels, and (b) to link these con-

ceptual, pre-linguistic encoding levels with language. From this perspective, this volume

essentially contributes to the language grounding challenge and the question of how lan-

guage readiness and competence may emerge from a focused analysis of sensorimotor

experiences.

3. An interdisciplinary perspective on the mind

Psychological studies of development, memory, and behavior all indicate that events

play critical roles in cognitive processes. Evidence from neuroscience also corroborates

the idea that predictive encodings bind behaviorally critical aspects of real-time experi-

ences into compact, event-predictive encodings. Finally, recent computational modeling

efforts suggest that events and event boundaries can be identified accurately by machine

learning algorithms. When focusing learning on event boundaries, the resulting event-

based machine learning algorithms yield event-based bindings and clusterings (Gumbsch,

Butz, & Martius, 2019; Gumbsch, Kneissler, & Butz, 2016; Zacks et al., 2007). These

algorithms combine several benefits. They support accounts of event and episodic mem-

ory formation, they promise solutions to the catastrophic forgetting problem, and they

suggest methods for optimizing behavioral primitives. They also contribute to models of

habit formation and to models of hierarchical goal-directed planning and reasoning.

Moreover, these sensorimotor-grounded structures appear to be well-suited to be linked to

language, offering intermediate, semantic, sensorimotor grounded, conceptual, composi-

tionally recombinable structures (Jackendoff, 2002).
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This special issue brings together cognitive scientists who are experts in developmen-

tal, cognitive and neuro-computational psychology, linguistics, machine learning, and

cognitive and computational neuroscience with the purpose to foster the development of

an overarching perspective on event-predictive cognition. Ultimately, these insights may

reveal how the human mind develops, which event-predictive structures constitute our

knowledge and memory, and which processing dynamics unfold within those structures to

generate actual thought and human intelligence.

Accordingly, this special issue addresses the following core questions:

• What are the origins of event-predictive processes and why are they useful for

improving behavior?

• How is sensorimotor dynamics selectively integrated into event-predictive encod-

ings?

• Can event-predictive encodings serve as a basis for modeling conceptual, pre-lin-

guistic structures?

• How can such encodings be linked to language?

• Which signals (e.g., prediction errors) best support the development of suitable

abstractions, compact encodings, and event-taxonomies?

• How is missing information about events inferred and integrated with available

information?

• What happens when event predictions go wrong?

4. Paper contributions and connections

This volume starts with a novel perspective on the phylogenetic development of event

processing units, that is, neurons themselves. Paulin and Cahill-Lane (2021) argue that in

a particular environmental niche 560 million years ago—just a few million years before

the Cambrian explosion—some of the motile animals that fed on microbial mat-grounds

started to feed on each other, resulting in a dynamic predator–prey situation. The authors

corroborate evidence that the evolution of event-predictive neurons allowed animals to

feed as long as possible while avoiding to be eaten since they were now able to flee just

in time, that is, when the “being eaten” event onset was imminent. While the resulting

neural event processing is only implicitly anticipatory (Butz & Kutter, 2017; Butz,

Sigaud, & G�erard, 2003b), optimized by evolutionary process, it may indeed have laid

the sensorimotor-grounded basis for all more complex event processing abilities there-

after.

The roots of event-predictive cognition in motor control and action decision-making

are then pursued from psychological and cognitive modeling perspectives. Elsner and

Adam (2021) argue that the perception and interpretation of events must be at least par-

tially rooted in own-action competencies. Adopting a neural network modeling perspec-

tive, Cooper (2021) points out that action execution and event perception are closely

linked, in that both processes involve an event representation: In the case of action
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execution, the event representation is first expressed as a goal, which generates sensori-

motor behavior, while in event perception, the event representation is constructed from

sensorimotor signals. Elsner and Adam (2021) and Cooper (2021) essentially agree that

action goals, decision-making, action production and control, as well as action monitoring

are closely linked, and may be subsumed by the notion of event-predictive processing.

Interestingly, action monitoring by event-predictive activities directly enables the distinc-

tion between self-agency and the agency of others (Elsner & Adam, 2021), potentially

causing problems when the event-predictive activities are erroneous (Storchak, Ehlis, &

Fallgatter, 2021).

Being thus rooted in the need for event-predictive decision-making and motor control,

the increasing versatility of behavior requires that events are appropriately segmented and

compactly encoded. The developing event structures may be characterized by predictive

encoding attractors, which reliably apply while an event is processed or executed (Bald-

win & Kosie, 2021; Butz, 2016). Shin and DuBrow (2021) emphasize the need to infer

latent variables, which encode the causes that constitute an event. Event transitions then

manifest themselves in significant changes in the activities of latent variables. Baldwin

and Kosie (2021) point out that these changes are often predictably unpredictable, which

may facilitate the detection of event boundaries in the first place. These authors helpfully

identify two possible methods for detecting event boundaries. First, the dedicated process-

ing of surprising sensorimotor information, that is, unexpectedly large errors between the

predicted event dynamics and actual perceptions (Baldwin & Kosie, 2021; Cooper, 2021;

Stawarczyk, Bezdek, & Zacks, 2021; €Unal, Ji, & Papafragou, 2021) can serve as event

boundary indicators. This initially exogenous surprise signal, once integrated into event

and event-boundary predictive encodings, becomes endogenously predicted, thus sup-

pressing (the then predictable) surprise after learning (Baldwin & Kosie, 2021; Stawar-

czyk et al., 2021; Storchak et al., 2021). Second, the fact that event processing involves

the inference of latent variables can be used in service of event boundary detection.

Latent variables, which may be understood as setting the stage for processing particular

events via their predictive activities, must necessarily differ when different events are

processed (Shin & DuBrow, 2021). As a result, tracking latent variable activity changes

across time may also serve to identify event boundaries. Hohwy, Hebblewhite, and Drum-

mond (2021) highlight the strong linkage between (latent) event encodings and the pre-

dictive brain perspective, where Bayesian inference processes should lead to the

development of probabilistic, loosely hierarchically structured, event-predictive encodings.

Recent predictive, Bayesian information processing and neural network models offer

algorithms that implement these two perspectives on event segmentation (Butz, Bilkey,

Humaidan, Knott, & Otte, 2019; Gumbsch et al., 2019). Meanwhile, Hebblewhite,

Hohwy, and Drummond (2021) emphasize the strong linkage between event encodings

and hierarchical reinforcement learning approaches. The authors stress the need to still

clarify how to control the granularity of event-predictive segmentations and levels of

abstractions thereof. Moreover, they propose that the options framework in hierarchical

reinforcement learning (Butz & Kutter, 2017; Sutton, Precup, & Singh, 1999), in combi-

nation with option-focused policy gradient techniques (Bacon, Harb, & Precup, 2017),
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might offer a useful, complementary mechanism for producing behaviorally and cogni-

tively useful abstractions.

The event structures developed from these methods integrate relevant agents and enti-

ties, and identify the distinct roles they play in events. Knott and Takac (2021) emphasize

that such role structures, while being rooted in actual sensorimotor-based manipulations

of the environment, can be closely linked to the hierarchical logical structure of sentences

in human language. They suggest a general framework for characterizing sensorimotor

processes as sequences of discrete “deictic operations”—and a framework for characteriz-

ing event representations that tap into these same deictic operations. Deictic operations

include perceptual operations (for instance, attention to, and classification of, an external

agent or object) but also motor operations (for instance, the action of reaching toward an

attentionally selected item in peripersonal space). Their account of the interface between

event representations and language retains a reference to deictic operations: Thus, for

Knott and Takac, deictic operations are critical in an account of how language interfaces

with sensorimotor processes.

In Knott and Takac’s conception, event encodings have a symbolic flavor. In the model

of McRae, Brown, and Elman (2021), however, event representations are not symbolic.

McRae et al., working with recurrent neural network models, point out that temporally

predictive structures may be essential for the characterization of particular events. The

predictive mechanisms in this case encode the entities and actions involved in an event,

as well as their typical interactions over time. These structures are analogue, rather than

symbolic. Moreover, the progression from one event to another is non-linear, enabling

flexibility in the imagination and the control of an event. Nonetheless, loose hierarchical

structures can still be encoded, which may characterize the essence of more complex

events, such as “changing the tire of a car.”

Separately from questions about the structure of events, there are also questions to be

asked about the content of events. Which entities, circumstances, and other properties

should be integrated into an event representation? The inference of the latent causes,

which characterize an event, is typically non-trivial (Shin & DuBrow, 2021). Accord-

ingly, Storchak et al. (2021) point out that incorrectly processed error signals may lead to

the false integration or non-integration of event signals, potentially leading to inappropri-

ate stimulus interpretations—essentially generating exogenous surprise signals when they

should have been predicted endogenously. A related challenge lies in determining

whether a currently perceived event is novel, or should be integrated into available event-

predictive encodings (Baldwin & Kosie, 2021; Stawarczyk et al., 2021).

While it remains unresolved when sensorimotor signals are integrated into available

event-predictive structures and when novel structures are formed (probably again these

two mechanisms are blended rather than distinct), many papers emphasize the role of

working memory in this process (Bilkey & Jensen, 2021; Knott & Takac, 2021; McRae

et al., 2021; Stawarczyk et al., 2021). Stawarczyk et al. (2021) in particular focus on the

role of the brain’s default network for maintaining and processing particular events and

event successions. A push–pull situation is described, which continuously regulates infor-

mation processing over time, assigning two roles to the default network core. One lies in
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generating events during imagination, reasoning, and planning, when decoupled from the

sensorimotor here and now. Another role lies in integrating incoming sensorimotor infor-

mation into event-predictive processes, to maintain internal latent activities that encode

and process the current event dynamics. The generation of meaningful imaginations relies

on the proper re-combination of events and event successions, where “properness” may

be measured by the mutual prediction error in event-predictive attractors. Such imagina-

tions essentially enable compositional, and even counterfactual, reasoning, planning, and

reflection processes (Bilkey & Jensen, 2021; McRae et al., 2021; Storchak et al., 2021;
€Unal et al., 2021). While being in tune with the world, however, event-predictive pro-

cesses will continuously work on optimally integrating sensorimotor information, adapting

event-predictive encoding activities, and thus parsing, perceiving, and generating events,

including action events (Cooper, 2021; Stawarczyk et al., 2021). As a result, while pro-

cessing and executing events, attention tends to focus on those regions that are antici-

pated to be highly informative in interpreting or controlling current event dynamics

(Baldwin & Kosie, 2021; Elsner & Adam, 2021; Knott & Takac, 2021; Paulin & Cahill-

Lane, 2021; Stawarczyk et al., 2021).

Besides the important role of a default network, Bilkey and Jensen (2021) as well as

Baldwin and Kosie (2021) put forward the likely critical role of the hippocampus for

learning event and episodic memory structures. Bilkey and Jensen (2021) view event

boundary markers as critical components for the consolidation of event episodes and dis-

cuss the neural signatures that might accompany them, linking the hippocampal literature

on putative event boundary markers with that describing memory consolidation. They

also note their potential importance for effective recombination with other compatible

events and event boundaries, enabling the formation of novel event successions. There

are indeed hints that this principle may be implicated both in the formation of episodic

memories and in the learning of spatial representations, which keep local proximity esti-

mates but generalize over deeper temporal orders. Note that a close relation to temporally

predictive artificial neural network structures can be drawn here (Cooper, 2021; Knott &

Takac, 2021; McRae et al., 2021), whereby the inference of latent variables may be criti-

cal to avoid catastrophic forgetting while still ensuring effective memory consolidation

(Kumaran, Hassabis, & McClelland, 2016; Shin & DuBrow, 2021). It thus appears that

with the help of the hippocampus, default network core structures can be re-instantiated

to consolidate sensorimotor segmentations and event-predictive encodings. In this case,

learning progress and the selective, active exploration and consolidation may be viewed

as a push–pull process. The world pulls the process toward novel experiences that seem

to be integratable or that may enhance the so far available event-predictive latent knowl-

edge structures. Meanwhile, these structures also push cognition toward intentionally opti-

mizing them further, by directing attention and actively exploring the environment

(Baldwin & Kosie, 2021; Cooper, 2021; Shin & DuBrow, 2021).

The linkage between event-predictive structures and language is investigated in detail

by several of the papers in this volume. €Unal et al. (2021) show that event boundary and

event role encodings do indeed align well with linguistic encodings of events. Knott and

Takac (2021) show how sensorimotor interaction encodings offer themselves as the basis
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for grammatical encodings at the logical form level. However, the neural model of

McRae et al. (2021) gets as input distributed event encodings, including agent, action,

and patient. It then focuses on the loosely hierarchically structured network of subevents,

which are constitutive of a more complex event, such as changing a tire.

Warren and Dresang (2021) further summarize these papers and additional data that

indicate strong interactions between language and event-predictive structures. Moreover,

they highlight that event-predictive interpretations of linguistic expressions may very well

stay underspecified and may be made concrete in various manners only when necessary.

As Warren and Dresang (2021) emphasize, this observation may explain the variability in

describing events observed in the data and model of McRae et al. (2021), which seems

to, but does not, stand in contrast to the rather strict hierarchical structures proposed in

Cooper (2021) and implied in Knott and Takac (2021). The social, communicative, and

cooperative utility of event encodings is emphasized by several papers (Baldwin & Kosie,

2021; Elsner & Adam, 2021; €Unal et al., 2021). When interpreting the actions of others

we are able to infer their intentions, essentially anticipating their current physical or com-

municative goals, enabling us to respond in preemptive, anticipatory manners. The pre-

sented results and theoretical considerations suggest that two means of analyses develop,

which go hand in hand. On the one hand, the child monitors the semantics of actions and

environmental interactions, inferring and anticipating unfolding event dynamics and pro-

gressions thereof. On the other hand, the child develops the ability to process aspects of

the world in an event-predictive, linguistically driven manner, enabling grammatically

constraint inferences and reasoning processes while remaining grounded in the experi-

enced reality. As a result, communication can unfold on a linguistic, event-predictive

level, lifting socially interactive behavior onto a much more advanced, versatile, and

adaptive stage.

Finally, Kuperberg (2021) offers an encompassing, integrative theoretical treatise of

nearly all papers covered in this volume. Relying on interdisciplinary evidence, she devel-

ops a hierarchical generative framework based on principles of probabilistic predictive

processing and offers a unifying account of how abstract event-predictive encodings are

formed. She further details how the mind both monitors the unfolding events and updates

the encoding of such events in memory, focusing on consistency of its predictions. This

processing enables the detection of event boundaries necessary for event segmentation

and the formation of compact hierarchical generative structures that can be stored in

memory. While Kuperberg primarily focuses on event perception and inferring intentions

and goals upon observing the actions of other agents, she also offers extensions of her

framework to goal-directed behavior and the process of goal-setting from the point of

view of the acting agent. Finally, the paper addresses the social implications of success-

fully formed event-predictive encodings for the perception of novel events and unfamiliar

agents. Overall, the paper highlights many important interactions between learning, mem-

ory, and the perception and pursuance of environmental interactions, all of which continu-

ously unfold in and are mediated by a developing hierarchical generative event-predictive

model, that is, our brain.
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5. Conclusion

The contributions in this volume offer a highly interdisciplinary perspective on event-

predictive cognition. We suggest that such a perspective is useful—indeed critical—for

highlighting and comprehending the significance of event-predictive mechanisms in struc-

turing human cognition. There is a convergence on models of event representation from

across many disciplines and theoretical perspectives. The available evidence suggests that

well-structured event-predictive encodings and processes critically focus the cognitive

mechanisms that deliver the human ability to interact with the environment in a highly

versatile, social, and anticipatory goal-directed manner. That is to say, event-predictive

encodings and processes are of critical importance in delivering intelligent human behav-

ior.

The implications of this proposal go beyond the theoretical understanding of how the

human mind works. Event processing is a crucial component of learning. Our ability to

process, categorize, and remember new events depends on the properties of the sensori-

motor stream that surrounds those events. Currently irrelevant sensory signals, such as,

for example, notifications and messages we receive on our phones while being in and

focusing on different events, interfere with the processes that help to consolidate new

events in memory. Thus, educational strategies should take the findings related to event

segmentation and recall into account. Moreover, even for adults excessive event interrup-

tions are not only disturbing but also cognitively strenuous, calling for effective strategies

for dealing with or simply ignoring current non-urgent stimuli.

With respect to artificial intelligence, when the task is to develop systems that become

truly intelligent, we suggest that their learning mechanisms should be endowed with

inductive biases that tend to develop latent, event-predictive encodings. Such encodings

tend to yield compact factored, and partially even causal, explanations of the observed

sensorimotor dynamics, they enable planning and reasoning on conceptual and composi-

tionally meaningful levels, and they appear to be well-connectible with language encod-

ings and processing mechanisms. As a result, these neurocognitive machine learning

systems may be able to uncover innovative problem solutions and recommendations, and

may thus outperform current deep learning, classification-oriented machine learning sys-

tems by far.
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